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ABSTRACT
 One of the most challenging problems in skin tissue engineering is the development of 
functional vascularized networks in wounded tissues. In this regard, improving angiogenesis is 
considered to be effective for the regeneration of the skin during wound healing. Therefore, differ-
ent strategies have been developed to induce angiogenesis in skin tissue engineering. Using stem 
cells and delivery of angiogenic nanomaterials via a biocompatible scaffold are examples of these 
strategies. Adipose-derived stem cells could not only differentiate into endothelial and epithelial 
cells under appropriate conditions, but could also secrete angiogenic growth factors such as vas-
cular endothelial growth factor, basic fibroblast growth factor and hepatocyte growth factor that 
induce angiogenesis in ischemia injury models. Bioglass nanoparticles are potent nanobiomate-
rials to improve angiogenesis in chronic wound healing. Because the wound healing process de-
pends on the quality of newly formed blood vessels, recent interest in bioglass nanoparticles has 
increased dramatically. Adding some of the metallic ions (e.g., Co2+, Cu2+, Eu3+, Mg2+ and Nb5+) 
to the structure of bioglass nanoparticles could enhance their angiogenic properties. We purpose 
that delivery of doped mesoporous bioactive glass nanoparticles and adipose-derived stem cells 
via electrospun nanofibrous silk fibroin membrane as a scaffold would improve chronic wound 
healing by enhancing angiogenesis.
Keywords: Doped bioactive glass, adipose-derived stem cells, silk fibroin, chronic wound, wound 
healing 
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Background
 Skin is known as the body’s largest or-
gan and also the first defensive barrier against 
foreign agents and microbial invasions. It also 
retains body fluids, controls temperature, and 
detects external stimuli. Thus, when the skin is 
severely damaged, human health and life will 
be at risk. Chronic wounds often have severe 
scarring and inflammation, and it takes up to 
three months to heal (1). In recent years, dif-
ferent strategies have been developed for the 
treatment and healing of chronic wounds. The 
most successful clinical strategy is skin auto-
graft, which is considered the gold standard for 
wound treatment. Despite all of the advantag-
es of this method, including the lack of immu-
nogenicity, there are limitations. Slow rate of 
dermis regeneration, pain, hair regeneration 
and pigmentation disturbance are reported 
post-surgery problems at the donor site. There-
fore, alternative approaches are needed to over-
come these issues (2, 3).
 One of the strategies is to use engineered 
structures, such as engineered scaffolds with or 
without cells that can imitate the extracellular 
matrix (ECM) of the native tissue. Such scaffolds 
could provide a suitable microstructure similar 
to the ECM for cells to proliferate, migrate and 
differentiate (4). Various elements and factors, 
such as ions, nanoparticles and growth factors, 
could be incorporated into these scaffolds to 
give them advantages such as angiogenic prop-
erties (5).
 Wound healing is a complex multi-step 
process. In the first step, a clot plugs the wound-
ed site. The repair and regeneration of the area 
would then continue with the formation of 
granulation tissue due to the introduction of 
fibroblasts, capillaries and immune cells into 
the clot. The edge of the wound would be aggre-
gated and the epidermal layer would cover the 
surface of the wound (6). Angiogenesis plays a 
critical role in this process. In brief, angiogen-
esis implies the formation of new capillaries 
from pre-existing vessels to create a complex 
network of blood vessels. Angiogenesis at the 
wound site provides more nutrition through 
blood flow and improves the healing process. 
Many strategies to improve skin regeneration 
are based on stimulating and promoting angio-
genesis (7). 

Hypothesis
 It is assumed that adipose-derived stem 
cells (ADSCs) delivered via electrospun nanofi-
brous silk fibroin membrane may have the po-
tential to proliferate efficiently and differentiate 
into different cells such as epithelial and endo-
thelial cells in the presence of doped bioactive 
glass nanoparticles (BG-NPs). Doped BG-NPs 
could also stimulate the production of various 
angiogenic cytokines that lead to angiogene-
sis. In addition, an incorporated nanofibrous 
scaffold could offer numerous benefits for the 
delivery of stem cells to the wounded area, as 
it provides a framework to support their rege-
nerative capacity. Therefore, local delivery of 
ADSCs via an incorporated nanofibrous elec-
trospun membrane with angiogenic properties 
could effectively accelerate the process of chro-
nic wound healing by improving angiogenesis 
and re-epithelialization.
Evaluation of the hypothesis
Differentiation of ADSCs
 ADSCs have shown many interesting ad-
vantages over other available stem cells. They 
are abundant and could easily be isolated from 
liposuction aspirates and cultured in vitro. They 
also maintain multipotent differentiation po-
tential with aging. Many studies have shown the 
potential of ADSCs for differentiation in tissue 
engineering and regenerative medicine applica-
tions (8, 9). A number of studies have demons-
trated that ADSCs provide a potent source for 
bone regeneration (10, 11). An investigation by 
Cowan et al. showed in vivo osteogenic capa-
bility of apatite-coated PLGA scaffolds seeded 
with ADSCs to heal critical-size mouse calvarial 
defects. The results revealed the differentiation 
of ADSCs into osteoblasts resulting in signifi-
cant intramembranous bone formation after 2 
weeks of implantation (12). Furthermore, some 
studies have shown that ADSCs could be a cell 
source for cornea regeneration due to their dif-
ferentiation into corneal endothelial-like cells 
and functional keratocytes (13). Other stu-
dies have demonstrated the capacity of ADSCs 
to differentiate into other lineages, including 
chodrogenic, myogenic, epithelial, endothelial, 
etc., under appropriate conditions (14-18). We 
highlight the point whether ADSCs can improve 
wound healing by differentiating into epithelial 
and endothelial cells.
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          A study conducted by Cao et al. revea-
led that ADSCs expressed endothelial markers 
in the presence of vascular endothelial growth 
factor (VEGF) in vitro, while ADSCs could diffe-
rentiate into endothelial cells and play a role in 
angiogenesis in responding to local signals (19). 
Another related study by Lu et al. indicated that 
ADSCs improve the blood supply of skin flaps 
through differentiation into endothelial cells 
(20). It has also been shown that the multipo-
tent ADSCs population tends to be closely asso-
ciated to the perivascular cells (21). Endothelial 
cells differentiated from ADSCs may play a cri-
tical role in the formation of new vessels to en-
sure the enhanced viability of ischemia tissues.
 All-trans-retinoic acid has been demons-
trated to induce cytokeratin-18 expression in 
ADSCs and to almost abolish vimentin expres-
sion, indicating that ADSCs also have epitheli-
al potential (22). Further studies by Yan et al. 
showed the differentiation of ADSCs into epit-
helial cells in the presence of epithelial growth 
factor (EGF), fibroblast growth factor (FGF) and 
all-trans-retinoic acid in the epithelial differen-
tiation culture medium (23). It is therefore pos-
sible, based on the studies mentioned above, 
that ADSCs have the potential to be induced into 
epithelial and endothelial cells under appropri-
ate conditions.
Angiogenesis of ADSCs
 One of the evidence supporting the idea 
of angiogenic capacity of ADSCs is their poten-
tial to differentiate into endothelial cells, as 
discussed earlier. Apart from being able to dif-
ferentiate into other cell types, ADSCs secrete 
angiogenic growth factors, including VEGF, ba-
sic fibroblast growth factor-2 (bFGF) and he-
patocyte growth factor (HGF) (24-26). VEGF is 
the most significant angiogenesis stimulating 
factor. The main role of VEGF is to stabilize the 
vascular system through the development of 
new blood vessels networks (27). bFGF is one 
of the most studied cytokines in angiogenesis 
investigations. As a result of its effects on smoo-
th muscle and endothelial cells, bFGF stimula-
tes angiogenesis as well as its function as a che-
mo-attractant and aids in the proliferation of 
fibroblasts and epithelial cells (28). It also has 
a critical function in the self-renewal of ADSCs 
(29). Folkman and Klagsbrum reported in vitro

proliferation of endothelial cells treated with 
bFGF in 1987 (30). In vivo angiogenic proper-
ties of bFGF were then studied by different 
researchers in chick embryo chorioallantoic 
membranes (CAM) and rodent corneas (31, 32). 
bFGF also has an indirect role in inducing an-
giogenesis by enhancing VEGF expression (33). 
HGF is another important endothelial growth 
factor with mitogenic and angiogenic effects 
(34). Cai et al. have demonstrated that Suppres-
sion of HGF production impairs the ability of 
ADSCs to improve ischemic tissue re-vasculari-
zation (35).
 In conclusion, the results of these related 
studies may support the angiogenic role of AD-
SCs due to the secretion of angiogenic growth 
factors.
Doped mesoporous BG-NPs angiogenic pro-
perties
 BG is a series of designed silica-based 
glasses where the 3D SiO2 network is modified 
by adding CaO, Na2O and P2O5. By mixing the 
different ratios of these four oxides, various 
BGs have been produced. Additional oxides or 
ions may also be used to improve specific thera-
peutic function (36).
 In recent years, BG-NPs have been widely 
studied for potential applications in the fields 
of tissue engineering and regenerative medici-
ne due to their ability to improve angiogenesis 
and osteogenesis (37, 38). Doped mesoporous 
BG-NPs have attracted a great deal of interest, 
as their ion dissolution products have been re-
cognized to enhance angiogenesis, which plays 
a critical role in wound healing process. In this 
respect, the basic composition of BGs has been 
modified using additives or dopants, usually 
metallic ions such as Zn2+, Co2+, Cu2+, Mg2+, 
Ag+, Sr2+, and F–. The presence of these me-
tallic ions in the BG structure is an important 
factor making them angiogenesis stimulators, 
antibacterial agents, and anti-inflammatory 
agents (39) (Fig. 1).
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Fig. 1. Ions releasing from incorporated mesoporous BG during the wound healing process (39-43) 

 Among these ions, Co2+ and Cu2+ have been known as strong angiogenesis enhancers. 
Cu2+ regulates many factors involving in angiogenesis process including angiogenin, VEGF, pros-
taglandin E-1, fibronectin, caeruloplasmin, collagenase, and bFGF which play critical roles in ini-
tiation, maturation and regulation of blood vessel formation (44, 45). Bührer et al. revealed that 
copper-doped 45S5 BG promotes angiogenesis in the rat arteriovenous loop model compared to 
45S5 BG (46). In this regard, Zhao et al. showed that copper-doped borate-based BG can induce 
the migration of human umbilical vein endothelial cells (HUVECs), VEGF secretion, and angiogen-
ic genes expression (47). It has been shown that Co2+-containing BG increase angiogenesis by 
activating HIF-1a regulatory pathway. Activation of the HIF-1a pathway leads to overexpression 
of proteins involved in angiogenesis, such as VEGF (48). Kargozar et al. demonstrated that adding 
Co2+ ions to BGs is an effective way to enhance angiogenesis in vitro and in vivo (49).
 In addition to the ions discussed above, it has been shown that the incorporation of Eu3+, 
Mg2+ and Nb5+ and into BG-NPs can also improve angiogenesis (39). Table 1 summarizes some of 
the BGs that can induce angiogenesis.
Table 1. Angiogenic BGs in biomedical applications (42, 50-54)

Angiogenic
Element

BG Type In vitro
(cell type)

In vivo
(animal model)

Results Ref

Boron 45S5 BG - CAM of quail
embryos

Increased expression of integrin αvβ3, Increased
number of blood vessels

(50)

Copper Borate BG hBMSCs In vivo (rat with
calvarial defects)

Proliferation of hBMSCs, Blood vessels formation
(confirmed by IHC staining for CD31)

(42)

Magnesium Silicate BG HAECs Rabbit bone defect Proliferation of HAECs, HAECs alignment and exhibition of branch nodes that con-

firms the primary stage of angiogenesis, Enhanced angiogenesis in the defect area

(51)

Europium BG 45S5 HUVECs Mice with full- thickness 

wound

Upregulated angiogenesis-related genes (MMP9, VEGFR1/2, CD31 and PDGFR α/β) 

of HUVECs,

Formation of blood vessels, Deposition of collagen
and re-epithelialization at wounded site

(52)

Niobium 45S5 BG ST-2 bone marrow 

stromal cells

- Proliferation of bone marrow stromal cells, Significant increase in VEGF release (53)

Strontium Borate BG hBMSCs Critical-sized rabbit femoral 

condyle defect

model

Proliferation of hBMSCs, Upregulated expression of genes associated with angiogene-

sis and osteogenesis, such as VEGF, RUNX2, BMP-2, and osteopontin

(54)

CAM: chorioallantoic membrane; hBMSCs: human bone marrow mesenchymal stem cells; HAECs: human amniotic epithelial cells; 
HUVECs: human umblical vein endothelial cells; stem cells
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Electrospun nanofibrous silk fibroin mem-
brane as a scaffold
 By electrospinning technique, more than 
200 polymers could produce nano- or microfib-
ers with a high surface-to-volume ratio (55). 
Biocompatibility is the most important feature 
that determines the suitability of a material for 
tissue engineering applications. After identi-
fying the biocompatibility of a polymer, other 
features that make a polymeric construct ap-
propriate for the regeneration of a target tissue 
should be considered. Appropriate mechanical, 
physicochemical and biological properties are 
important for the regeneration of wounded tis-
sues (56, 57).
 Natural biopolymers such as silk fibroin 
have attracted much attention and widely uti-
lized in scaffold fabrication due to some signif-
icant features such as better imitation of extra-
cellular matrix and promotion of cell adhesion, 
differentiation and migration. In addition, the 
degradation products of these biopolymers 
have no cell toxicity. Silk fibroin, a FDA ap-
proved natural polymer (1993), shows suitable 
mechanical properties and cell compatibility 
(58). Silk fibroin could be used single or blend-
ed to produce nanofibrous membranes for var-
ious biomedical applications. Different studies 
have also demonstrated that BG-NPs could be 
incorporated into silk fibroin nanofibers (59).
 We can conclude that BG-incorporated 
silk fibroin nanofibers could provide a suitable 
surface for cell attachment as well as an appro-
priate microstructure for the proliferation and 
differentiation of ADSCs.
Consequences of the hypothesis and discus-
sion
 We hypothesized that the local deliv-
ery of doped mesoporous BG-NPs and ADSCs 
via electrospun nanofibrous silk fibroin mem-
brane could accelerate chronic wound healing 
by enhancing angiogenesis. Based on the data 
mentioned above, we discussed the capacity of 
ADSCs to differentiate into epithelial and en-
dothelial cells under appropriate conditions 
(19-23). Based on other evidence, angiogenic 
factors that could be responsible for the role of 
ADSCs in promoting angiogenesis could be re-
leased by ADSCs engrafted in ischemic injury 
animal models (34, 35, 60). 

In addition, it is suggested that ADSCs could 
improve angiogenesis through both differenti-
ation into endothelial cells and secretion of an-
giogenic factors.
 Doped mesoporous BG-NPs have been 
widely used in biomedical applications as their 
ion dissolution products have been recognized 
to enhance angiogenesis, bactericidal effects 
and anti- inflammatory properties which are 
important for chronic wound healing (39) (Fig. 
1). The basic composition of BG-NPs has been 
modified using additives or dopants in order to 
improve their angiogenic properties. The pres-
ence of Cu2+, Co2+, Zn2+, Eu3+, Nb5+, Mg2+, 
and Sr2+ ions in the BG structure has been 
shown to induce the secretion of angiogen-
ic growth factors in vitro and in vivo (49-53). 
It is therefore reasonable to assume that the 
presence of doped BG-NPs could induce AD-
SCs, differentiated endothelial cells and native 
fibroblasts to secrete angiogenic growth factors 
leading to accelerated chronic wound healing.
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