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Introduction
         At present, COVID-19 is a brutal enemy 
who has killed tens of thousands of people. It 
posed a serious threat to human being. Moreo-
ver, people do not have effective ways to anni-
hilate it. In the pandemic period, most of coun-
tries can currently take these actions just using 
passive protect measures like social distance, 
taking masks, and home isolation to reduce 
the infected risk. Many researchers analyz-
ed china’s epidemic period that China banned 
travel to and from Wuhan city for more than 
50 days the cases who infected COVID-19 have 
been dropped down [1]. Some researcher even 
urged that the home isolation should keep until 
2022 [2]. However, all economic activities have 
been shown down now. Thus, people expect 
that bending the curve of which keeps rising 
confirmed cases infected COVID-19 and death 
cases can come up early. Thus, the author tries 
to apply BSTS model to analysis U.S. COVID-19 

case data from CDC in the United States by us-
ing Local linear trend, Seasonality, Contempo-
raneous covariates of dynamic coefficients. On 
the other hand, the author takes techniques 
such as prior distribution and prior elicitation, 
and posterior inference to give some interpre-
tations of the model. The research gains more 
effective results.
 In addition, many institutions and schol-
ars conducted a lot research for COVID-19. 
Some researchers used an objective approach 
to predict the continuation of the COVID-19. 
They produced ten-day ahead point forecasts 
and prediction intervals [3].  Some people used 
1334 cases from China that were line-list data 
to receive age-stratified estimation. The results 
displayed that the case fatality ratio was like-
ly to be strongly influenced by the availability 
of health-care facilities [4]. Also, some schol-
ars chose exponential smoothing family to test 
forecasting accuracy. The family suggested that
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there were good effects [5]. In the initial phase, 
the author in this paper applied general time 
series forecasting methods followed by his pre-
vious techniques such as SARIMA model (1,1,2) 
(Seasonal autoregressive integrated moving av-
erage) and GARCH (generalized autoregressive 
conditional heteroskedasticity) to tested and 
analyzed the trend and seasonality of COVID 19 
data [6,7]. The results showed good accuracy 
over a couple of forecasting competition. Also, 
the author tested to least absolute shrinkage 
and selection operator to estimate parameters 
of COVID-19 data by introducing into previous 
his method [8]. And then, used clustering meth-
od to allow “the eigenvalues of the correlation 
or covariance to test the parameters” [9]. But it 
was not positive effects.
 On the other hand, some pursued new 
angle of research on COVID-19. For example, 
German and British scholars’ research found 
that it is probable to have three types of virus-
es: A, B, and C for COVID-19. U.S. cases are likely 
to come from them [10].  But epidemiologists 
often apply time series models such as ARIMA 
model (Autoregressive Integrated Moving Av-
erage), spectral analysis and the periodogram. 
For instance, an epidemiologist used the Lomb 
periodogram and the classic periodogram to 
Philadelphia Whooping cough timer series to 
achieve project research goal [11].  
 In despite of these research on COV-
ID-19, no institutions and scholars use BSTS to 
analyze and predict COVID-19. Therefore, the 
author would like to test to use BSTS to analyze 
and forecast the total Confirmed cases in the 
United States that collects data from CDC from 
February 29, 2020 through April 6, 2020. The 
author thinks that the Causal Impact function 
in R programming is the feature selection in 
BSTS model that may perform causal inference 
by counterfactual predictions. It has good char-
acteristics such as trend, seasonal, regression, 
holiday. It is one of good default model [12]. It 
is supposed that the time series of the treated 
unit is explained with a set of covariates while 
do not allow themselves to be impacted by the 
intervention. This is currently popular analysis 
method of time series model. Typically, it con-
tains pre-period, post-period arguments and / 
or alpha, etc. for this paper, a time series model 
is automatically built and estimated. 

The argument models provide over the model 
computations.
 For most models of BSTS we know that 
“niter” is number of Markov Chain Monte Carlo 
(MCMC) sample to draw. The model can gener-
ate time series model for short- and long-term 
forecasting [13]. If there is higher number, it is 
more accurate inferences. “standardized. data” 
allows all columns of the data with moments 
estimated for the pre-intervention period pri-
or to fitting the model to be standardized. It 
means that empirical Bayes accessing setting 
the priors so that the results will be linear 
transformations of the data. “priot.level.sd.” de-
notes in terms of data standard deviations that 
does have the Gaussian random walk of the lo-
cal level. It can choose and let dataset with low 
residual volatility when regressing out known 
predictors such as total confirmed or fatality in 
this data. “nseasons” is period of the seasonal 
components. In general, it contains a season-
al component, set this to entire number larger 
than 1. For example, when there are daily ob-
servations, e.g. 1 for a day from a component of 
data, it interfaces currently only supports up to 
one seasonal component. In addition, it can let 
observations specify a number of seasonal com-
ponents. Therefore, BSTS. model defaults to 1 
that means no used seasonal component. “sea-
son. duration” is a kind of duration of each sea-
son. For example, if adding a day-of-week com-
ponent to data with daily granularity, and offers 
the arguments model.args=list(nseasons=7. 
Season, duration=1), etc. “dynamic. Regression” 
includes the coefficients of time varying regres-
sion. It may combine local trend or local level 
that effects one of over specification.  
2. Bayesian structural time series models.
 Typically models of structural time se-
ries data are state space models. Most of them 
can be regarded as a set of equations. Structural 
models are much easier to generalize, such as 
covariates and we are not hard to process miss-
ing values with structural models [14]. For ex-
ample, the local level model is
Yt=WtT ut + εt,                         εt~ N(0,σ∈

2)            (1) 
ut+1=Tt ut+Stωt ,                        ωt~ N(0,σω

2)           (2)
The above equations assume under independent of 
all other unknowns. For 1st equation it is the ob-
servation function that connects with the observed 
data   Yt to a latent d-dimensional state ut. 
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Second one is the state function that involves 
in the process of vector u_t through time. Thus, 
second one called “state” equation sometimes. 
Also, Yt is as to a scalar observation and Wt  is 
usually d-dimension output vector by transition 
matrix d×d.   St is often a matrix by d×q. εt is 
regarded as a scalar observation error that 
could be noise variance  σϵ

2 and ωt is a q-dimen-
sional system error with a q×q state diffusion 
matrix  σω

2. Here, note that q≤d exists.       
 Since structural timer series model has 
some advantages of flexible and modular and 
is statistical method for feature selection, it is 
more and more valued by time series research-
ers. For their flexible, it is probably because the 
model includes all of ARIMA models (Autore-
gressive Integrated Moving Average). Modu-
lar does combine with Wt, Tt and ωt, etc. from 
a library of component sub-models to capture 
significant structures in the data.  Some of com-
ponent models have been applied to capturing, 
the trend, seasonality, or else. For example,
(1) Local linear trend. The 1st components 
model. It is a form of the following equations:
 Yt=ut + εt ,                   εt~ N(0,σϵ

2)                         (3) 
ut+1=ut+βt+ωt,            ωt~N(0,σω

2)                        (4) 
βt+1=βt+φt                                     φt~ N(0,,σφ

2)                         (5) 
This is a selection of modeling trends that can 
fit for local variation immediately. Especially for 
short term prediction requirement, it seems to 
appear in the flexible levels, but it is not appro-
priate to long term predictions. Here, ut is trend, 
βt is the seasonal component. Moreover, the 
model is faster to enters the state space frame-
work [15].
(2) Seasonality.
Like local linear trend, seasonality is also state 
component model. The functions are as follows: 
Yt=ut +θt+ εt                              εt~ N(0,σϵ

2)                       (6)
θt+1=-∑s=

0s-2θt-s +γθ,t                                                                                                (7)
Here, S expresses the number of seasons and 
γ_tthat indicates joint contribution to the ob-
served response Yt. Please note that S-2 is most 
recent seasonal effects. Also, there is a scalar for 
the error term. Moreover, the equation is one of 
state model that does have less than full rank.  
For θt+1 there is the mean that has zero of the to-
tal seasonal effect with summed over S seasons. 
For instance, when S=3 so that we can capture 
3 seasons per time unit, the mean of the spring 
coefficient might be -1× (summer +fall+ winter)

then, for the seasonal model the transition ma-
trix Mt will be (S-1) ×(S-1) matrix with -1’s with 
the top row, which the sub-diagonal and 0’s else.
(3) Contemporaneous covariates of dynam-
ic/static coefficients
The latter is to control time series when it gets 
no treatment. It is used to solve accurate coun-
terfactual predictions and effects other unob-
served causes. In this paper, it is mainly used of 
former, contemporaneous covariates with dy-
namic coefficients. It is a regression component 
to explain time varying ties for example, sup-
pose covariates a=1,2, …, n, was imported in the 
dynamic regression component, then we have 
the following expression:
Zm

M ρm=∑n=1
nzn,m ρm,n                                                                        (8)

ρm,n+1    =ρm,n+ τρ,m,n                                                                                (9)
Here, the above equation τρ,m,n belongs to 
τρ,m,n~N(0,σρm

2) the coefficient for the m th con-
trol series and σρn is the standard  deviation 
of its connected with random walk. If setting 
Qm=am,,  Pm=Lm, on the other hand, we set the 
corresponding the transition matrix into 
Vm=Kn×n, and Dm= diag ( σρm

2), then we can com-
plete the dynamic regression components.
(4) Prior distributions and prior elicitation
 Suppose γ expresses all of model pa-
rameters, φ is a set of the full state sequences 
and φ= φ1,…,φn. They are allowed to a prior 
distribution  x (γ)  with the model parameters 
and exist in x(φ0 |γ ) is regarded as the initial 
state values. So, we use MCMC method to gain 
the sample results through p (φ,γ| d ). If there 
are a matrix τ with zero of elements and sup-
poseθt=1, τt ≠ 0 and θt = 0, otherwise Also, if τn 
expresses the nonzero scalars for the vector τ. 
If sequences q= q1,q2,…,qn.  Suppose  ∑_q-1 is the 
rows. The columns are be nonzero entries for q. 
Then, we can use the spike and slab in the fol-
lowing function:
p(q,τ,1/σε

2)=p(q)p(σε
2|q)p(τm|q,σε

2)[16]            (10)
In addition, we can also write a formula for slab 
of the prior if using Gamma distribution:
τq|σϵ

2~N (bq σϵ
2 (∑q

-1)-1)                    [16]          (11)  
(5) Posterior inference
For the full likelihood function, if the law of to-
tal probability is p A=∑nP( A|Bn )P(Bn), then we 
have the function:
p (δ,τ,∑qπ)=p( δ,|τ,∑q,π) p(τ | π)  p(∑q |τ) p (π)(12)
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Here, δ expresses the set of values to multiple time 
series that is components of time series with trend, 
seasonality and others). Also, ∑_q is a correlated er-
ror. It is involved in a normal prior to have the obser-
vations standardize, and then generate a posterior 
distribution. Thus, we could use MCMC to compute 
the posterior probability distribution [16]           
(6) Forecasting
 Since the forecasts are associated with 
the mode with the posterior predictive distri-
bution, Bayesian analysis and forecasts have a 
formula that is like posterior inference. If we 
define δ as the set of values, then we can get the 
formula of posterior predictive distribution is 
as follows:
p (δ | ω) =∫p(δ|β)p(β |ω)dβ.      [16]              (13)
3.Analysis and forecasting of empirical data
 The data of this paper is used from CDC 
(Center of Disease Control) in the United States. 
The author collects variables is that (1) The 
days are time that gets to start to report the first 
death case, from February 29, 2020 through 
April 6, 2020. (2) Total Confirmed cases. This 
is counting same as the days by which patients 
have been tested the positive Corona virus Nu-
cleic Acid testing no matter whether or not they 
have symptoms with cough, fever, and other up-
per respiratory tract infection. (3) Recovered 
cases daily who have been treated or in hospi-
tal or out outpatients, or self-heal without any 
treatment. (4) Death cases who were comput-
ed without vital signs. (5) Fatality rate. It is the 
numbers that computed by the formula=100 % 
(Death cases daily/ Confirmed cases daily). To 
find the relationship with the confirmed case 
daily and death case daily in the United States, 
the author made plot of time series for the both. 
The results showed that there is significant lin-
ear regression between the both. Please see the 
following figure 1.
Figure 1. The plot of time series with conformed cas-
es daily and death cases daily.

 For predict struct, plots are three panels: 
The 1st one shows that the data and a counterfactu-
al prediction for the post-treatment period. The 2nd 
one displays the difference between observed data 
and counterfactual prediction trends, which is the 
pointwise case effect via the model estimations. The 
last one is plus of the pointwise contributions by the 
2nd panel that generates a plot of the cumulative 
effect of the intervention. They are based mainly 
on the assumption that most of covariates impact-
ed by the intervention. Also, the model is assumed 
by which the relationship between covariates and 
treated time series as established while the pre-pe-
riod, remains stable to the post-period.
Figure 2. The prediction plot for original data, point-
wise, and cumulative.

In the Figure 2 the model contains that the rela-
tionship between Confirmed cases daily in the 
and Deaths cases daily in the United States from 
February 29, 2020 throughout April 6, 2020. 
Clearly, it shows that the cases of confirmed 
data will be dropped as the end of April 2020, 
and then slightly rebounded in mid-May 2020 
but decreased after that. The numbers of cases 
daily is fluctuated around 10,000 cases.
 Causal Impact function is one of feature 
selections in BSTS model that may perform 
causal inference by counterfactual predictions. 
It is supposed that the time series of the treated 
unit is explained with a set of covariates while 
do not allow themselves to be impacted by the 
intervention. It is currently popular analysis 
method of time series model. Typically, it con-
tains pre-period, post-period, mode.arg and/ or 
alpha, etc. for this paper, a time series model is 
automatically built and estimated. 
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The argument mode. arguments provide over 
the model.
 In Table 1 R output suggests that the pre-
dictive values are the range of (73594, 439814) 
for total confirmed cases that infected COV-
ID-19 virus in the United States. For cumulative 
prediction the value is ± 1e+05 of cumulative 
trend.
Table 1. The R outputs of posterior inference using 
causal impact function

Posterior Inference (Causal Impact)

                                                 Average     Cumulative

Actual 6480   395258

Prediction(s.d.) 7210 (1206)   439814 (73594)

95% CI     [4883, 9624]   [297834, 587088]

Absolute effect (s.d.) -730 (1206)   -44556 (73594)

95% CI   [-3145, 1597]   [-191830, 97424]

Relative effect (s.d.)   -10% (17%)    -10% (17%)

95% CI   [-44%, 22%]    [-44%, 22%]

Posterior tail-area probability p:   0.25301

Posterior prob. of a causal effect:  75%
> summary (impact, „report“)
Analysis report {Causal Impact}
 During the post-intervention period, 
the response variable had an average value of 
approx. 6.48K. In the absence of an interventi-
on, we would have expected an average respon-
se of 7.21K. The 95% interval of this counter-
factual prediction is [4.88K, 9.62K]. Subtracting 
this prediction from the observed response 
yields an estimate of the causal effect the in-
tervention had on the response variable. This 
effect is -0.73K with a 95% interval of [-3.14K, 
1.60K]. For a discussion of the significance of 
this effect, see below.Summing up the indivi-
dual data points during the post-intervention 
period (which can only sometimes be meaning-
fully interpreted), the response variable had an 
overall value of 395.26K. Had the intervention 
not taken place, we would have expected a sum 
of 439.81K. The 95% interval of this prediction 
is [297.83K, 587.09K].
 The above results are given in terms of 
absolute numbers. In relative terms, the re-
sponse variable showed a decrease of -10%. 
The 95% interval of this percentage is [-44%, 
+22%].
 This means that, although it may look as 
though the intervention has exerted a negative 
effect on the response variable when conside-
ring the intervention period as a whole, 

this effect is not statistically significant, and so 
cannot be meaningfully interpreted. The appa-
rent effect could be the result of random fluc-
tuations that are unrelated to the intervention. 
This is often the case when the intervention pe-
riod is very long and includes much of the time 
when the effect has already worn off. It can also 
be the case when the intervention period is too 
short to distinguish the signal from the noise. 
Finally, failing to find a significant effect can 
happen when there are not enough control va-
riables or when these variables do not correlate 
well with the response variable during the le-
arning period.The probability of obtaining this 
effect by chance is p = 0.274. This means the ef-
fect may be spurious.
Table 2. The summary on predictive average values 
and the ranges.

Actual Pred Pred.lower Pred. upper

Average     6479.639     7210.071     4808.34     9627.339

Cumulative 395258.000 439814.318 293308.71 587267.675

Pred.sd AbsEffect AbsEffect.lower

Average   1216.347     -730.4314     -3144.747

Cumulative 74197.197 -44556.3184 -191829.583

AbsEffect.upper AbsEffect.sd RelEffect

Average     1671.3   1216.347 -0.1013071

Cumulative 101949.3 74197.197 -0.1013071

RelEffect.lower RelEffect.upper RelEffect.sd

Average -0.4365699 0.2318008 0.1673295

Cumulative -0.4365699 0.2318008 0.1673295

Alpha P

Average 0.05 0.2740964

Cumulative 0.05 0.2740964

 In Table 2 we can see that pre.lower and 
Pred. upper are 293308.71 and 587267.67. For 
time series data of response variables and other 
covariates, data is often given a zoo object, a 
vector, a matrix or others. The response variab-
le could be the 1st column and other covariates 
distributes to other columns; a zoo object will 
be regarded as its time that indicates the x-airs 
in plot technique. Option “response” is used to 
describe the observed response as supplied to 
Causal Impact function. Option “cum.reponse” 
provides cumulative response with the mode-
ling time. Option “point.pred” is posterior mean 
of counterfactual predictions. “Point.pred.lo-
wer” and  “point.pred.upper” are a set of  lower 
limit or upper limit (1-alpha) posterior interva-
ls. “Pomt.effect” is point-wise posterior causal 
effect. It may include lower and upper of
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 the poster intervals “Cum.effect.lower” or “Cum.
effect.Upper” are similar as the above. The re-
sults show that the range of total cumulative 
confirmed cases infected COVID-19 virus in the 
United States should be around 4808 to 9627 
daily and most likely to be (293309, 587268). 
That is, total numbers infected COVID-19 virus 
would be nearly 600,000 in the United States in 
subsequent months.
Figure 3. Smoothed values for components in the pa-
rameters of death and total confirmed.

Figure 3 shows the data and estimated smoo-
thed values. the actual data are shown as solid 
lines, the points denote smoothed values with 
±2 standard error bounds are shown as a blue 
color; tick marks indicate days of observation.
 Figure 4.   Structural models: the trend and seasonal 
parameters of the total confirmed  variable.             

Figure 4 shows that estimated trend component 
and seasonal component of the total confirmed 
variable with the variable days. Gray areas rep-
resent some root MSE bounds.
Figure 5. Visualization of BSTS predicting original se-
ries.

 The Figure 5 is a visualization of pre-
dictive values for original series. It suggests 
that, after 38th day, which the last day collect 
dataset, the total confirmed cases infected COV-
ID-19 would be fluctuated with the range of ± 
1e+05. That is, it conforms that total confirmed 
cases could be increased in subsequent months. 
Therefore, it meets with the forecast of Figure 
2 (The prediction plot for original data, point-
wise, and cumulative), which is ± 1e+05 of cu-
mulative trend.
Figure 6. Plots for scale value and cumulative abso-
lute errors of level, trend and season with days that 
started in February 29. 

 In Figure 6, we can see clearly that, using 
“AddlocalLinearTrend “and seasonal functions 
could allow us analyze level, trend and season 
change with variable “days” after making loga-
rithm of data. The results show that predictive 
values regressed with original data. 
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Second one is more than 0.04 of  variable Death; 
around 0.038 of Confirmed Daily, lastly, other 
two variables, Fatality and Day, are equal to or 
lower than 0.02. Thus, it suggests that in the 
empirical estimation and analysis on the model 
we should eye on them.                  
4.Discussion
 For most models of BSTS we know that 
“niter” is number of MCMC sample to draw. If 
there is higher number, it is more accurate in-
ferences. “standardized data” allows all col-
umns of the data with moments estimated for 
the pre-intervention period prior to fitting the 
model to be standardized. It means that em-
pirical Bayes accessing setting the priors so 
that the results will be linear transformations 
of the data. “priot.level.sd.” denotes in terms 
of data standard deviations that does have the 
Gaussian random walk of the local level. It can 
choose and let dataset with low residual volatil-
ity when regressing out known predictors such 
as total confirmed or fatality in this data. “nsea-
sons” is period of the seasonal components. In 
general, it contains a seasonal component, set 
this to entire number larger than 1. Thus, BSTS 
model defaults to 1 that means no used sea-
sonal component. “season. duration” is a kind 
of duration of each season. “dynamic. Regres-
sion” includes the coefficients of time varying 
regression. It may combine local trend or local 
level that effects one of overspecification. Also, 
for posterior distribution, it can summarize the 
proportion if observing the data [17].  
 In this paper Causal Impact function of 
BSTS model is applied to analyze and forecast 
the model of  the total confirmed cases in the 
United States from February29 to April 6.The 
author thinks that the total conformed cas-
es that infected COVID-19 virus in the United 
States will be most likely to increase straightly, 
total numbers infected COVID-19 virus would 
be nearly 600,000 in the United States in near 
future (in the subsequent months). And then 
will appear in the peak around the md-May 
2020. The empirical results suggest that the 
flexibilities of local linear trend, seasonality, 
and contemporaneous covariates of dynamic/
static coefficients have good effects on short 
term predictions.

It explains enough that the advantages of flex-
ibility of local linear trend, level and season of 
BSTS state component models for the short-
term predictions.
Figure 7. The plot of average coefficients from six pa-
rameters.                   

 Figure 7 generates a histogram that dis-
plays average coefficients from Fatality, Day, 
Deaths, Recovered, and Confirmed daily. It 
shows that average coefficient of Fatality seems 
to be more significant than other variables in the 
model. Hence, the average coefficient of Fatality 
rate should be worthy in our analysis on these 
parameters. The author would like to point that 
average coefficient from Conformed Daily looks 
like to not have any status in the model.  
Figure 8. Histogram of probabilities for data varia-
bles       

 Figure 8 provides us inclusion proba-
bilies comparing each variable in the analysis 
system. The results shows that the probability 
from variable Recovered is nearly 0.07. It looks 
like to play more important role than other var-
iables in the data. 
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