

Research Article

Open Access

Investigation of the Morphology of the SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts

Augusta G H and Gmachowski Zhang

Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, C.P. 22860, Mexico

***Corresponding Author:** Gmachowski Zhang, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, C.P. 22860, Mexico

Citation: Investigation of the Morphology of the SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts. Am J Petroche. 2019; 1(1): 001-007.

Submitted: 11 June 2019; Approved: 18 June 2019; Published: 19 June 2019

Abstract

SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as catalyst supports, absorbents, drug delivery materials, etc. Since it has a lack of functionality, heteroatoms and organic functional groups have been incorporated by direct or post-synthesis methods in order to modify their functionality. The aim of this article is to review the stateof-the-art related to the use of SBA-15-based mesoporous systems as supports for hydrodesulfurization (HDS) catalysts.

Keywords: SBA-15, mesoporous, silica, catalyst support, hydrodesulfurization

Introduction

Nowadays, in the petroleum refining industry, the deep desulfurization of "more dirty" feeds containing refractory S-containing compounds, such as 4,6-dimethyl dibenzothiophene (4,6-DMDBT), is a priority task, due to an increasing demand for ultralow S-containing fuels imposed by more strict environmental regulations [1]. Since it is impossible to achieve deep hydrodesulfurization (HDS) of fuels using classical Co(Ni)Mo(W)/Al2O3 sulfide catalysts [2], it is urgent to develop new catalysts with higher activities, greater selectivity and better resistance to H2S and N-poisoning than those that are being used currently.

The origin of the almost exclusive use of alumina as support has been ascribed to its outstanding textural and mechanical properties and its relatively low cost [3]. However, the presence of undesirable strong metal-support interactions in the alumina-supported catalysts has triggered research devoted to the development of new supports for HDS applications [4,5,6,7,8,9,10,11,12,13]. In this sense, the use of ordered mesoporous siliceous molecular sieves as supports has been intensively investigated [5,13,14].

Ordered mesoporous silicas were first reported in 1992 [15]. Since then, significant progress has

been made in their morphology control, pore size adjustment, composition variation and application developments [16,17,18]. During the last two decades, various mesoporous structures have been synthesized, which can be roughly classified into three categories based on the pore types: nearly spherical cage, cylindrical channel and bi-continuous channel [19]. Among different ordered mesoporous silicas, SBA-type silicas are the most frequently studied [13 ,14,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,3 5,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51, 52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,6 8,69,70,71,72,73,74,75,76,77,78,79,80,81,82]. SBA-15 silica (SBA = Santa Barbara Amorphous) exhibits interesting textural properties, such as large specific surface areas (above 1000 m2·g-1), uniform-sized pores (in range 4–30 nm), thick framework walls, small crystallite size of primary particles and complementary textural porosity. The advantage of the use of SBA-15 material as support includes also its high surface-to-volume ratio, variable framework compositions and high thermal stability [20,21,22].

Figure 1a,b shows two high resolution transmission electron microscopy (HRTEM) micrographs of our laboratory-synthetized SBA-15 mesoporous silica calcined at 550 °C. As seen in this figure, SBA-15 shows hexagonal pores in a 2D array with long 1D

channels (p6mm plane group) [21]. The channels are interconnected by small micropores. Thus, SBA-15 exhibits mainly mesoporous structure and possesses a small amount of micropores. The large pore size of this mesoporous material can mitigate the diffusion barrier for the reactants and the products. However, pure siliceous SBA-15 has an electronically neutral framework and lacks Brønsted acidity. This problem could be circumvented by SBA-15 modification in order to make this mesoporous substrate more versatile in terms of its possible applications, either as a structural material or support, in absorption processes, separation, catalysis, etc.; or, as reviewed in this case, as support of catalysts used in hydrodesulfurization (HDS) reactions in petroleum refining processes.

Figure 1: High resolution transmission electron microscopy (HRTEM) micrographs of SBA-15 mesoporous silica. The size and morphology of the highly ordered hexagonal pores in a 2D array (a) with long 1D channels (b) (p6mm plane group) can be observed.

There are many approaches to prepare better SBA-15-supported catalysts, such as changing the support properties by substitution of Si4+ by different cations, functionalization with different groups, etc., changing the active phase component, varying the preparation method, etc. In general, the studies in this field aim to get relationships between different physical and chemical properties of the support and active phases and catalyst performance for hydrotreating reactions, such as hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodeoxygenation (HDO) and/or hydrodearomatization (HDA). Recent revision by Rahmat et al. [22] on the SBA-15-based catalysts focused on their application in biorefinery production. In this review, we are going to show the possibilities of the use of SBA-15 silica as support for hydrodesulfurization catalysts. **Influence of Support**

Synthesis of Bare SBA-15

The synthesis of SBA-15 molecular sieve requires the use of triblock copolymer (typically non-ionic triblock copolymer) as a structure directing agent and tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS) or tetrapropyl orthosilicate (TPOS) as a silica source [22,23,24,25,26]. In a typical synthesis, the structure directing agent (e.g., Pluronic P123: E020P070E020 from BASF) is dissolved under stirring in a solution of water and 2 M HCl. After this, the required amount of tetraethyl orthosilicate (TEOS) is added at 35 °C. Then, this aqueous solution of triblock copolymer and TEOS is kept under stirring conditions for 20 h for aging. At this stage of preparation, the control of pH is of paramount importance, because the formation of ordered hexagonal SBA-15 with uniform pores up to 30 nm might only occur in strong acidic media, i.e., pH \approx 1 [23,24,25]. In the case when the pH of a solution will be higher than that of the isoelectric of silica, i.e., at pH 2-6, no precipitation or formation of silica gel occurs. The formation of disordered or amorphous silica was observed for the synthesis carried out at neutral pH (\approx 7) [25].

Zhao et al. [23,24,25] reported the synthesis of a variety of mesoporous SBA-type silicas using non-ionic triblock copolymers as template. This type of surfactant is very interesting, because it is easily separated, is nontoxic, biodegradable and inexpensive [23]. The synthesis conducted with these surfactants usually occurs in low-pH solutions (pH \approx 2), where the interaction occurs through an S0H+X-I+ mechanism (S0H+ being the surfactant hydrogen bonded to a hydronium ion, X- the chloride ion and I+ the protonated silica) [24]. The mixture is subsequently aged at 80 °C overnight. Then, the solid obtained is filtered, washed thoroughly with deionized water, dried first in air at room temperature and then calcination is carried out by slowly increasing temperature from room temperature to 500 °C in 8 h and heating at 500 °C for 6 h. The latter step of the template removal is one of the crucial aspects in the synthesis of ordered mesoporous, because the

procedure employed during calcination influenced the final textural properties of SBA-15 material. According to Zhao et al. [23], the calcination at 500 °C led to formation of SBA-15 with interlattice d spacing of 74.5–320 Å between the (100) planes, pore volume up to 0.85 m3·g–1 and silica wall thickness of 31–64 Å.

The effect of the synthesis conditions on the textural and structural properties of SBA-15 materials was studied by Klimova and co-workers [26] by using a statistical model built from a full 23 factorial design at two levels. Textural and structural differences induced by change in the synthesis conditions (temperature of the reaction of gel formation, as well as temperature and time of the aging stage) were discussed in terms of the mechanism of SBA-15 formation in the presence of Pluronic P123. The statistical analysis showed that both synthesis and aging temperatures had a significant influence on the textural and structural properties of SBA-15 materials. Their increase affected in a positive way the Brunauer-Emmett-Teller (BET) surface area, total pore volume, pore diameter and unit-cell parameter, producing, simultaneously, a decrease of micropore area and pore wall thickness. As compared to aging temperature, it was found that the gel aging time is of much lower importance, with the exception of micropore area, which continued decreasing with the increase of aging time [26].

Modulation of Pore Diameter

The control of the support's pore diameter is of paramount importance for SBA-15-based hydrotreating catalysts, which has diffusion limitations of large feed molecules to enter into unidirectional channels of the SBA-15. To study the effect of different pore diameters, the SBA-15-supported catalysts having pore diameters in the range 5–20 nm were screened for hydrotreating of heavy gas oil [27,28,29].

In this direction, Boahene et al. [27] tested FeW/SBA-15 sulfide catalysts with pore diameters in the range 5–20 nm as potential hydrotreating catalysts for hydrotreatment of heavy gas oil. The highly ordered siliceous SBA-15 substrates with different pore diameters were synthesized using hexane as a micelle expander under acidic conditions. It was found that the catalyst with a pore diameter of 10 nm was the best among the FeW/SBA-15 catalysts studied, probably due to the sufficient mass transfer of the reactants through the catalyst's pores, while maintaining a high surface area necessary for metal dispersion [27].

The effect of support pore diameter was reported also for NiMo/SBA-15 [28] and NiMo/Al-SBA-15 [29] sulfide catalysts tested in the hydrotreating of gas oil. A series of binary NiW catalysts supported on SBA-15 with different pore sizes were prepared by Lei et al. [28]. The NiW/SBA-15 sulfide catalysts with different pore sizes were tested in the hydrogenation of a heavy oil (distillation temperature: 320–340 °C) derived from the direct coal liquefaction process. It was found that the pore size of the support has a significant influence on the Ni/W crystallite size and catalytic activity, larger Ni–W crystals being formed on the supports having larger pores. As expected, the catalysts with the largest pores displayed the highest HDN and HDA activities for heavy oil upgrading [28].

For the NiMo/Al-SBA-15 catalysts, Chandra Mouli et al. [29] employed direct and post synthesis modification methods to incorporate aluminum in the framework of SBA-15. In the direct and post-synthesis approaches, the aluminum sulfate and ammonium hexafluoroaluminate were used as a source of aluminum, respectively. In the direct synthesis, the highest pore diameter was limited to 7 nm. The post-synthesis support modification with the ammonium hexafluoroaluminate led to Al-SBA-15 substrate with pore diameter greater than 10 nm. The pore structure of the synthesized SBA-15 did not collapse until 13 nm of pore diameter, as confirmed from the small angle XRD and TEM analysis. The Ni-Mo/Al-SBA-15 sulfide catalysts with different pore diameters were tested in hydrotreating of heavy gas oil carried out in a trickle bed continuous reactor [29]. It was found that HDS and HDN activities increased with the increase in pore diameter until 13 nm, and then decreased, due to the collapse in the pore structure and poor dispersion of metals on the supports, as evidenced from the BET and TEM analysis. As a consequence, the NiMo/Al-SBA-15 sample prepared by the post-synthesis method exhibited the largest HDS activity in the hydrotreating of heavy gas oil [29]. Al3+ Ion Loading SBA-15 support modification with Al3+ ions could be achieved by direct [29,30,31,32,33,34] and post-synthesis modification [35,36,37,38,39] methods. Incorporation of Al during the one-pot synthesis presents difficulties, because the high acidity (pH \approx 1.5) needed for the creation of ordered pore structure of SBA-15 leads to leaching of aluminum and its coordination in the octahedral state. This problem can be circumvented when Al is introduced by the post-synthesis support's grafting with aluminum isopropoxide in non-aqueous solutions, anhydrous AlCl3, ammonium hexafluoroaluminate or sodium aluminate in aqueous solution.

REFERENCES

1. Early Alzheimer's Disease: Patterns of Functional MRI Activation-The Neural Substrates of Semantic Memory Deficits. Am J Bra Dis and Tum. 2018; 1(1): 001-010.

2. H Chahal, S W D Souza, A J Barson and P Slater. How to develop human brain using magnesium of N-methyl-D-aspartate receptors, Am J Bra Dis and Tum. 2018; 1(1): 001-005.

3. F S LaBella, et al.Concepts and correlations related to general anaesthesia and cytochrome P450 oxygenases. Am J Anest and Pai med. 2018; 1(1): 01-05.

4. Hazim J Safi, et al. The long term method with the elephant trunk for the repair of aortic aneurysms. Am J Anest and Pai med. 2018; 1(1): 001-008.

5. Yoshitaka Fujii, et al. Diaphragmatic Fatigue is treated with Inhaled Aminophylline Therapy in an Experimental Canine procedure. Am J Anest and Pai med. 2018; 1(1): 001-003.

6. O Demirkiran, et al. Complications in patients with Crush syndrome after the Marmara earthquake. Am J Anest and Pai med. 2018; 1(1): 001-005.

7. Qi Wei, et al. Laparoscopic choledochotomy after Biliary drainage: Study. Am J Anest and Pai med. 2018; 1(1): 001-007.

8. Mark Palazzo, et al. Unilateral Babinski/Plantar Reflex - Acute Inflammatory Demyelinating Polyneuropathy. Am J Anest and Pai med. 2018; 2(1): 01-02.

9. Hakan Alfredson, et al. Achilles and patellar tendon operations performed in local anestesia, Am J Anest and Pai med. 2018; 1(1): 001-002.

10. Naemeh Nikvarz, et al. Evaluation The Analgesic Effect of Duloxtine Drug in Burn Pationts. Am J Anest and Pai med. 2019; 2(1): 01-07.

11. Chuandong Zheng, et al. Intravascular Plaque: Cause for Radial Arterial Catheterization Failure. Am J Anest and Pai med. 2019; 2(1): 01-05.

12. Laura Tyler Perryman, et al. Wireless Dorsal Root Ganglion Stimulation: An Introduction and Early Experience with the New Approach for Chronic Pain Management. Am J Anest and Pai med. 2019; 2(1): 01-04.

13. Lazraq Mohamed, et al. Pediatric Pre-Anesthesia Consultation: What are Parents Expectations?. Am J Anest and Pai med. 2019; 2(1): 01-02.

14. Alaa Ali M. Elzohry, et al. Safety and Efficacy of Intraperitoneal Irrigation of Levo-Bupivacaine plus Morphine in Patients Undergoing Major Abdominal Cancer Surgeries. Am J Anest and Pai med. 2019; 2(1): 01- 07.

15. Yıldız K, et al.Comparison between Anesthesia Methods In Orthopaedics Initiatives of Upper Extremity. Am J Anest and Pai med. 2019; 2(2): 01-03.

16. Jianming Liu, et al. The Analgesic Effects Nalbuphine Hydrochloride Combined With Sufentanil for Patients after Thoracoscopic Lobectomy. Am J Anest and Pai med. 2019; 2(2): 01-03.

17. Fudong Shi, et al. The Patient Controlled Intravenous Analgesia of Dezocine on the Elderly Patients After Orthopedic Surgery. Am J Anest and Pai med. 2019; 2(1): 01-04.

18. GE Meglia, et al. Investigation in blood Leukocytes and Neutrophils in Periparturient Dairy Cow. Sci J of Ani and Vet Sci. 2018; 1(1): 001-009.

19. G E Duhamel, et al.DNA Sequence Analysis of an Immunogenic Glucose-Galactose Mglb. Sci J of Ani and Vet Sci. 2018; 1(1): 001-009.

20. David G. White, et al. Chloramphenicol and Florfenicol Resistance in Escherichia Coli of Characterization . Sci J of Ani and Vet Sci. 2018; 1(1): 001-006.

21. N B Alhaji, et al. Anophthalmia and Choanal Atresia In Two Months Old Kid. Sci J of Ani and Vet Sci. 2018; 1(1): 001-004.

22. Christopher W Olsen, et al.Isolation and Characteriza

tion of H4N6 Avian and Influenza Viruses. Sci J of Ani and Vet Sci. 2018; 1(1): 001-0025.

23. Teresa Lopez-Arteaga, et al. Apathy as a Psychiatric Manifestation of Meningioma. Am J Bra Dis and Tum. 2018; 1(1): 001-004.

24. David R Murdoch, et al. The Use of Brain Natriuretic Peptide- Whole Blood can be Measured, Am J Bra Dis and Tum. 2018; 1(1): 001-003.

25. Stefan Brocke, et al. Antibodies to Integrin α 4 and CD44, but not CD62L, Prevent CNS Inflammation and Experimental Encephalomyelitis by Blocking Secondary Leukocyte Recruitment. Am J Bra Dis and Tum. 2018; 1(1): 001-006.

26. Andrew J Saykin, et al. Early Alzheimer's Disease: Patterns of Functional MRI Activation-The Neural Substrates of Semantic Memory Deficits. Am J Bra Dis and Tum. 2018; 1(1): 001-010.

27. P Slater, et al.How to develop human brain using magnesium of N-methyl-D-aspartate receptors, Am J Bra Dis and Tum. 2018; 1(1): 001-005.

28. Clyde W Hodge, et al. The Paraventricular Nucleus Interactively Modulate Ethanol Consumption -Norepinephrine and Serotonin Receptors, Am J Bra Dis and Tum. 2018; 1(1): 001-005.

29. Paulo C Carvalho, et al. Bioinformatics grid application in simple - Squid. Sci J Biome and Biost. 2018; 1(1): 001-004.

30. Mahmoud A E Abdelrahman, et al. On The New Exact Solutions for the Nonlinear Models Arising In Plasma Physics. Sci J Biome and Biost. 2018; 1(1): 001-004.

31. Weicheng Shen, et al. Based on Personal Identification- Automated Biometrics. Sci J Biome and Biost. 2018; 1(1): 001-002.

32. V Prasathkumar, et al.Fingerprint Biometric System -Using of Personal Authentication. Sci J Biome and Biost. 2018; 1(1): 001-003.

33. SavitaChoudhary, et al. Software Development Environment : Design of Biometric Based Transaction System. Sci J Biome and Biost . 2018; 1(1): 001-003.

34. D J Lawrence, et al. Measuring the effectiveness in reliability and validity of a visual function outcomes instrument in cataract surgery. Sci J Biome and Biost. 2018; 1(1): 001-004.

35. Z Suvakovic, et al. Evaluation of early detection of gastric cancer requries more than gastroscopy. Anna of Can Ther and Phar. 2018; 1(1): 05.

36. Ho GY, et al. Informing and involving personalised computer based data for cancer patients. Anna of Can Ther and Phar. 2018; 1(1): 001-005.

37. Ray Jones, et al. Prostate Cancer Risk is associated with Polymorphism of Insulin gene. Anna of Can Ther and Phar. 2018; 1(1): 001-005.

38. : Jean-Pierre J. Issa, et al. Role of DNA Methylation in Tumor Suppressor Gene Silencing in Colorectal Cancer. Anna of Can Ther and Phar. 2018; 1(1): 001-008.

39. Jules J Berman, et al. Histological classification of tumour and molecular analysis meets Aristotle. Anna of Can Ther and Phar. 2018; 1(1): 001-005.

40. Kafil Akhtar, et al. Tuberculosis of the Tongue with Coexistent Squamous Cell Carcinoma: An Interesting Case Presentation, Anna of Can Ther and Phar. 2018; 1(1): 001-002.

41. Serafin Morales Murillo, et al. Vitamin D as A Prognostic Factor in Triple Negative Breast Cancer. Anna of Can Ther and Phar. 2019; 2(1): 01-08.

42. Ahmet Fuat, et al. A Qualitative Study of Accurate Diagnosis and Effective Management of Heart Failure in Primary Care. Am J of Card and Cardiovas Disc. 2018; 1(1): 01-05.

43. Jesús Millán Núñez-Cortés, et al. Prescription Habits for Statins in Patients with Impaired Glucose Metabolism. Results of a program with Focus Groups to Assess the Selection Criteria. Am J of Card and Cardiovas Disc. 2019; 1(1): 01-04. 44. G D Kolovou, et al. Evaluation of Postprandial hyper

triglyceridaemia in patients with Tangier disease. Am J of Card and Cardiovas Disc. 2018; 1(1): 01-04.

45. Brian O rourke, et al. Determination of The Mitochondrial Redox Waves and Subcellular Metabolic Transients in Heart Cells. Am J of Card and Cardiovas Disc. 2018; 1(1): 01-04.

46. Shuixiang Yang, et al. Radiofrequency Ablation Treating Atrial Fibrillation Can Reverse the Changes of Mirnas Regulating Ion Channel Proteins. Am J of Card and Cardiovas Disc. 2018; 1(1): 01-08.

47. Hadi abdulsalam Abo Aljadayel, et al. Penetrating War
Cardiac and Great Vessels Injury, Surgical Outcome Analysis in
24 Patients. Am J of Card and Cardiovas Disc. 2018; 1(2): 01-05.
48. Hatice Yorulmaz, et al. Assessment of the Death Anxiety and Death Depression Levels of Cardiac Patients. Am J of Card
and Cardiovas Disc. 2019; 2(1): 01-06.

49. Camara Abdoulaye, et al. Cardiomyopathie Du Peripartum Compliquee D'accident Vasculaire Cerebral Cas D'une Guinéenne De 19ans : Cas Clinique. Am J of Card and Cardiovas Disc. 2019; (1): 01-03.

50. Sergio F. Estrada-Orihuela, et al. Lasalocid, Interrupts and Reverses, Within One Minute, The Myocardial Damage Caused By Coronary Anoxia Reperfusion in Rat Heart. Am J of Card and Cardiovas Disc. 2019; (1): 01-05.

51. Jesus Millan Nunez-Cortes, et al. Prescription Habits for Statins in Patients with Impaired Glucose Metabolism. Results of a program with Focus Groups to Assess the Selection Criteria. Am J of Card and Cardiovas Disc. 2019; 1(1): 01-06.

52. Federico Cacciapuoti, et al. The Dilemma of Diastolic Heart Failure. Am J of Card and Cardiovas Disc. 2019; 1(1): 01-03.

53. Elad Boaz, Bowel Ischemia and Vascular Air-Fluid Levels. Anna Cas Rep and Ima Surg. 2018; 1(1): 001-00.

54. Sinisa Franjic, et al. A Patient With A Maxillofacial Problem. Anna Cas Rep and Ima Surg. 2018; 1(1): 001-004.

55. Davidson W, et al. Case Presentation: Hantavirus pulmonary syndrome [HPS]. Anna Cas Rep and Ima Surg. 2018; 1(1): 001-005.

56. Farid ZM, et al. Uropathy Secondary Chronic obstructive to Ureter Inguinal Herniation. Anna Cas Rep and Ima Surg. 2018; 1(1): 001-002.

57. De Letter DJ, et al. Cornual Molar Ectopic Pregnancy Diagnosis and Treatment. Anna Cas Rep and Ima Surg. 2018; 1(1): 001-003.

58. Ameni Touati, et al. Silver Russell Syndrome: Case Reports from North Africa and Review on The Literature. Anna Cas Rep and Ima Surg. 2019; 1(1): 001- 004.

59. Kunst WM, et al. Case Reports and Review of Spontaneous Rupture of Hyperreactive Malarial Splenomegaly [HMS]. Anna Cas Rep and Ima Surg. 2018; 1(1): 001-005.

60. F Hanefeld, et al. A Review of The Literature an Emerging Community Pathogen methicillin-Resistant Staphylococcus. Anna Cas Rep and Ima Surg. 2018; 1(1): 001-0011.

61. Page W Caufield, et al. Evidence for a Discrete Window of Infectivity. Am J Den and Ora Car. 2018; 1(1): 001-006.

62. Robert T Dirksen, et al. Dihydropyridine Receptors and Ryanodine Receptors: Bi-Directional Coupling . Am J Den and Ora Car. 2018; 1(1): 001-009.

63. IJ Jacobs, et al. Cancer and Intraepithelial Neoplasia-Tissue-specific apoptotic effects of the p53 codon 72 polymorphism . Am J Den and Ora Car. 2018; 1(1): 001-003.

64. Iain L C Chapple, et al. Human Immunodeficiency Virus disease in oral health significances. Am J Den and Ora Car. 2018; 1(1): 001-007.

65. H Larjava, et al. Activity of α vβ6 Integrin in Oral Leukoplakia. Am J Den and Ora Car. 2018; 1(1): 001-005.

66. Siddharth Kothari, et al. Effectiveness of Counselling and Home Care Self-Management Strategies in Reducing Masticatory Muscle Pain: A Review. Am J Den and Ora Car. 2019; 2(1): 001-007.

67. Betania Maria Soares, et al. Use of Blue LED and Curcumin for Photosensitization of Candida Albicans. Am J Den and Ora Car. 2019; 2(1): 001-005.

68. Jing Guo, et al. Advances in Methods of Maxillary Transverse Expansion. Am J Den and Ora Car. 2019; 2(1): 01-05.
69. Dario C. Altieri, et al. Cell division by p34cdc2 phosphorylation of survivin- Regulation . Sci J of Der and Ven. 2018; 1(1): 001-005.

70. Axel Trautmann, et al. Eczematous dermatitis: T cell and keratinocyte apoptosis plays a key pathogenetic . Sci J of Der and Ven. 2018; 1(1): 001-007.

71. JD Fine, et al. Epidermolysis bullosa Cardiomyopathy in inherited . Sci J of Der and Ven. 2018; 1(1): 001-004.

72. NE Fusenig, et al. Human Skin Angiogenic Switch Occurs Squamous Cell Carcinomas . Sci J of Der and Ven. 2018; 1(1): 001-007.

73. Tapani Tuomi, et al. Water- Damaged Building and Mycotoxins in Crude Building Materials. Sci J of Der and Ven. 2018; 1(1): 001-005.

74. John S Davies, et al. The Use of Social Media among Doctors Under taking a Post-Graduate Endocrinology Diploma. Sci J Endo and Meta. 2018; 1(1): 001-004.

75. Juan J Gagliardino, et al. By Short-Term Dietary Manipulation: The Endocrine Pancreas Activity of Tyrosine Hydroxylase. Sci J Endo and Meta. 2018; 1(1): 001-005.

76. Colin A. Leech, et al. The Glucose Dependent in Pancreatic β -Cells : Voltage-Independent Calcium Channels Mediate Slow Oscillations of Cytosolic CalciumPancreatic β -Cells. Sci J Endo and Meta. 2018; 1(1): 001-009.

77. Colin A. Leech, et al. The Voltage-Independent Activation of Inward Membrane Currents and Elevation of Intracellular Calcium in HIT-T15 Insulinoma CellsPituitary Adenylate Cyclase-Activating Polypeptide Induces. Sci J Endo and Meta. 2018; 1(1): 001-008.

78. Suhail AR Doi, et al. Making Use Of Combined Criteria - Diagnostic Criteria For Diabetes. Sci J Endo and Meta. 2018; 1(1): 001-006.

79. Maria I Borelli, et al. Effect Of Endogenous Islet Catecholamines Possible Modulatory On Insulin Secretion. Sci J Endo and Meta. 2018; 1(1): 001-005.

80. Louis Irwin, et al. Effect of exercise in combination with dietary nopal and zucchini on chronic and acute glucohomeostasis in genetically obese mice. Inte J Expe Bio. 2018; 1(1): 001-005.

81. Vijaya Saradhi Settaluri, et al. Validation of Non Essential Amino Acids and Total Protein Content in Different Categories of Tea. Inte J Expe Bio. 2018; 1(1): 01-04.

82. Patrick D Craig, et al. T Antigen: Polyomavirus Middle of Natural Biology. Inte J Expe Bio. 2018; 1(1): 001-007.

83. Yoshinori Ohsumi, et al. The HIV Coreceptor CCR5 -Recycling and Endocytosis. Inte J Expe Bio. 2018; 1(1): 001-008.
84. Marino Zerial, et al. Elicitation of the Angiogenic Phe-

notype1: Transforming Myc Protein for In Vivo. Inte J Expe Bio. 2018; 1(1): 001-008.

85. Zhang Y, et al. Odorant Receptor In Mammali : The Caenorhabditis Elegans Seven-Transmembrane Protein ODR-10 Functions on Cells. Inte J Expe Bio. 2019; 1(1): 001-008.

86. Kazuo Maeda, et al. Improved Outcome with Novel Studies in Fetal Monitoring. Sci J of Gyne and Obste. 2019; 2(1): 001-004.

87. Sunil J. Wimalawansa, et al. Vitamin D Deficiency-Related Reproductive Consequences. Sci J of Gyne and Obste. 2019; 2(1): 001-006.

88. Munch A, et al.Investigation in blood Leukocytes and Neutrophils in Periparturient Dairy Cow. Sci J of Gas and Hepa. 2018; 1(1): 001-006.

89. Jie Song Hua, et al. Primary Helicobacter Pylori Resist

ance to Clarithromycin and Metronidazole in Singapore. Sci J of Gas and Hepa. 2018; 1(1): 001-003.

90. Paul Moayyedi, et al. A Systematic Review and Economic Analysis: Proton Pump Inhibitors in Nonulcer Dyspepsia Efficacy. Sci J of Gas and Hepa. 2018; 1(1): 001-003.

91. Zhen-Ning Wang, et al.Gastric Cancer: Collagen IV Expression and Biological Behavior. Sci J of Gas and Hepa. 2018; 1(1): 001-002.

92. Zhen-Ning Wang, et al. A Possible Pathophysiologic Contribution to Necrotizing Enterocolitis: Human Intestine Inflammation. Sci J of Gas and Hepa. 2018; 1(1): 001-006.

93. Paul M Wassarman, et al. Egg Interaction during Mammalian Fertilization in the Molecular Basis of Sperm . Sci J of Gyne and Obste 2018; 1(1): 001-006.

94. Mary Lou Moore, et al. Breastfeeding Benefits Support -Research. Sci J of Gyne and Obste 2018; 1(1): 001-002.

95. Pepita Gimenez-Bonafe, et al. Preservation of Fertility in Patients with Cancer. Sci J of Gyne and Obste 2018; 1(2): 001-006.

96. Yueyang F Fei, et al. Non-Hemorrhagic Unilateral Adrenal Infarct In Pregnancy: A Case Report. Sci J of Gyne and Obste. 2019; 1(1): 001-002.

97. Karen Pierre, et al. Protein-Energy Adequacy of Dialysis Patients in Trinidad and Tobago. Am J of Nep and Ther. 2018; 1(1): 01-05.

98. Balakrishna N, Tenckhoff Catheter Surgical under Local Anesthesia. Am J of Nep and Ther. 2018; 1(1): 001-003.

99. J T Ohlsson, et al. Man in angiotensin and noradrenaline inhibits the Endothelin. Am J of Nep and Ther. 2018; 1(1): 001-005.

100. David J, et al. Apoptosis and Ischemic Renal Injury Reduce the Guanosine Supplementation. Am J of Nep and Ther. 2018; 1(1): 001-005.

101. R W Baldeweg, et al. Tumor-induced osteomalacia : Cloning and characterization of Fibroblast Growth Factor 23. Am J of Nep and Ther. 2018; 1(1): 001-006.

102. Amitabh Arya, et al. Post Pyeloplasty Follow Up In Children And Adolescents: Diuretic Renography Or Renal Ultrasonography? Am J of Nep and Ther. 2019; 2(1): 001-005.

103. Amitabh Arya, et al. Post Pyeloplasty Follow Up In Children And Adolescents: Diuretic Renography Or Renal Ultrasonography? Am J of Nep and Ther. 2019; 2(1): 001-005.

104. Richard Lechtenberg, et al. Tau Interferon in Multiple Sclerosis. Amer J Neur & Neurophysi. 2018; 1(1): 001-002.

105. Eva Guy Rodriguez, et al. Discussion of the differential diagnosis of bilateral thalamic lesions-Bilateral thalamic infarcts due to occlusion of the Artery of Percheron. Amer J Neur & Neurophysi. 2018; 1(1): 001-004.

106. Yhashi Chang, et al. IVIg for Miller Fisher syndrome: Cerebral infarction. Amer J Neur & Neurophysi. 2018; 1(1): 001-002.

107. Fredrick J. Seil, et al. T cell responses to Myelin Antigens and Antimyelin Antibodies. Amer J Neur & Neurophysi. 2018; 1(1): 001-005.

108. Y Niimi, et al. Embolization of Spinal Cord AVMs: Neurophysiologic Provocative Testing. Amer J Neur & Neurophysi. 2018; 1(1): 001-002.

109. Ameni Touati, et al. Some Reducibility Results for Differentiable Sets. Amer J Neur & Neurophysi. 2019; 1(1): 001-005.

110. Chrisostomos Sofoudis, et al. Sofoudis C. Septic Abortion Accompanied with Dessiminated Intravascular Coagulation and Acute Cardiomyopathy Presentation of a Rare Case and Mini Review. Am J Nur & Pract. 2018;1(1): 001-00.

111. Nick Jones, et al. Nurse Practitioners and Family Physicians Ethics Health Care Services. Am J Nur & Pract. 2018; 1(1): 001-005.

112. Thomas R A, et al. Human Infants Learning by Prenatal

and Postnatal Flavor . Am J Nur & Pract. 2018; 1(1): 001- 006. 113. D. J Wise, et al. A Randomized, Double-Blind, Placebo-Controlled - Milk Production in Mothers of PremaTure Newborns Domperidone Drug effect. Am J Nur & Pract. 2018; 1(1): 001-005.

114. Bronagh Bufton, et al. Effects of Nursing Homes Ownership Compromise the Quality of Care. Am J Nur & Pract. 2018; 1(1): 001-005.

115. Kerstin Ekberg, et al. How Physicians Deal With the Task of Sickness Certification in Cause-Based and Comprehensive Disability Systems – A Scoping Review. Am J Nur & Pract. 2019; 2(1): 01-10.

116. Michael J. Vives, et al. Factors in Choosing the Surgical Approach: Cervical Spondylotic Myelopathy. Am J Orth and Rhe. 2018; 1(1): 001-004.

117. M. Runge, et al. Geriatric Patients in Balance Training and Exercise. Am J Orth and Rhe. 2018; 1(1): 001-003.

118. Ukoha Ukoha Ukoha, et al. Nutrient Foramina in Long Bones : Study. Am J Orth and Rhe. 2018; 1(1): 001-003.

119. Zhiquan An, et al. Human Humeral Diaphysis of the Nutrient Foramina : Anatomical Study : Study. Am J Orth and Rhe. 2018; 1(1): 001-007.

120. K-P Günther, et al. Hip Replacement in Rates: International Variation: Study. Am J Orth and Rhe. 2018; 1(1): 001-005.
121. Saeed Taj din, et al. Level of Physical Activity among Diabetic Patients of Rural and Urban Areas. Am J Orth and Rhe

Diabetic Patients of Rural and Urban Areas. Am J Orth and Rhe. 2019; 2(1): 001-004.

122. Carolina Caleza Jiménez, et al. Breastfeeding, Bed-Sharing and Early Childhood Caries. Is There An Association? A Review of the Literature. Am J Pedi and Heal care. 2018; 1(1): 001-004.

123. Katarzyna Niewiadomska-Jarosik, et al. Lipid Profile in Children Born As Small for Gestational Age . Am J Pedi and Heal care 2018; 2(1): 01-03.

124. Mustafa Aydin, et al. Antibiotic Susceptibility Pattern and Clinical Features of Klebsiella Sepsis in Newborn Infants. Am J Pedi and Heal care 2019; 1(1): 01-04.

125. H Dele Davies, et al. Necrotizing Fasciitis- Flesh-Eating Bacteria Disease. Am J Pedi and Heal care 2019; 1(1): 01-06.

126. Marie Westwood, et al. The diagnosis of urinary tract infection (UTI) in children under five years: Rapid tests and urine sampling techniques. Am J Pedi and Heal care 2019; 1(1): 01-09.

127. Folkert Fehr, et al. What Entrustable Professional Activities Add To a Primary Care Residency Curriculum. Am J Pedi and Heal care 2019; 2(1): 01-06.

128. Sonya Martin, et al. Spatially Modulated Illumination Microscopy D measures the size of Biological Nanostructures . Ann of Phar Nano Tech and Nanomedi. 2018; 1(1): 01-05.

129. Sonya Martin, et al. Genetic analysis of Fis interactions with their binding sites. Ann of Phar Nano Tech and Nanomedi. 2018; 1(1): 01-07.

130. John H Reif, et al. Nucleation assembly of DNA tile complexes is directed by barcode-patterned lattices. Ann of Phar Nano Tech and Nanomedi. 2018; 1(1): 01-07.

131. Thomas H LaBean, et al. Self assembly of DNA nanotubes from triple-crossover tiles as templates for conductive nanowires. Ann of Phar Nano Tech and Nanomedi. 2018; 1(1): 01-05.

132. Ulrich Kettling, et al. Dual-Photon Fluorescence Coincidence Analysis: Rapid quantification of Enzyme activity. Ann of Phar Nano Tech and Nanomedi. 2018; 1(1): 01-05.

133. Ahmed R. Gardouh, et al. Design, Optimization and In-Vitro Evaluation of Antifungal Activity of Nanostructured Lipid Carriers of Tolnaftate Ann of Phar Nano Tech and Nanomedi. 2019; 2(1): 01-05.

134. Mohammed Khalid, et al. Khalid M. Predictors of Prognosis in Pulmonary Hypertension. Anna Pul and Crit Car Med.

2018; 1(1): 001-004.

135. Abdullah Alsaeedi, et al. The Prevalence of Smoking among sample of Kuwait Asthmatics and its impact on the response of the treatment, Anna Pul and Crit Car Med. 2018; 1(2): 001-002.

136. Nicolau Beckmann, et al. Resolving the Oedematous Signals Induced by OVA Challenge in the Lungs of Actively Sensitised Rats. Anna Pul and Crit Car Med.. 2018; 1(1): 01-06.

137. Thomas J walsh, et al. Investigate the performance of non-invasive diagnostic tests such as galactomannan enzyme immunoassay and quantitative Caspofungin in the early diagnosis of invasive aspergillosis (IA). Anna Pul and Crit Car Med.. 2018; 1(1): 01-06.

138. Charles B. Huddleston, et al. Lung Transplantation in pediatrics. Anna Pul and Crit Car Med.. 2018; 1(1): 01-05.

139. Jeffrey P. Lamont, et al. Comparision of valved vs nonvalved implantable ports for vascular access:A randomized trial. Anna Pul and Crit Car Med.. 2018; 1(1): 01-03.

140. D Inwald, et al. Risk and relevance of open lung biopsy in Nonneonatal extracorporeal membrane oxygenation (ECMO) patients. Anna Pul and Crit Car Med.. 2018; 1(1): 01-04.

141. Guillaume Mortamet, et al. Does Esophageal Pressure Monitoring Reliably Permit To Estimate Trans pulmonary Pressure In Children?. Anna Pul and Crit Car Med.. 2018; 2(2): 01-05.

142. Yang Jin, et al. Extracellular Vesicle-Shuttling MicroR-NAs Regulate the Development of Inflammatory Lung Responses. Anna Pul and Crit Car Med.. 2018; 1(2): 01-04.

143. Nicola Clemente, et al. Pneumonectomy As A Salvage Therapy: A Rare Indication For A Gastric Malt Lymphoma Disseminated To The Lung. Anna Pul and Crit Car Med.. 2018; 1(2): 01-04.

144. Nicola Clemente, et al. Pneumonectomy As A Salvage Therapy: A Rare Indication For A Gastric Malt Lymphoma Disseminated To The Lung. Anna Pul and Crit Car Med.. 2018; 1(2): 01-04.

145. Victor Chew, et al. Pulmonary Cement Embolism. Anna Pul and Crit Car Med. 2019; 2(1): 01-02.

146. Victor Chew, et al. An Unusual Cause of a Tension Pneumothorax. Anna Pul and Crit Car Med. 2019; 2(1): 01-03.

147. Mark C. Lavigne, et al. A Performance Summary of Agents Used in Oral Care for Non-Ventilated and Mechanically-Ventilated Patients. Anna Pul and Crit Car Med. 2019; 2(2): 01-34.

148. Elisangela Hermes, et al. Psychomotricity in Vestibular Dysfunction Therapy (VDT): A Collective Health Question. Am J Rhin and Otolo. 2018; 1(1): 001- 005.

149. Ramtej J Verma, et al. Diethanolamine-Induced Hepatic Injury and Its Amelioration by Curcumin. Am J Toxi and Res. 2018; 1(1): 001-004.

150. Chee Kong Yap, et al. A Preliminary Screening of Cd and Pb Concentrations in the Some Traditional Chinese Herbal Medicines Bought From Selected Shops in Peninsular Malaysia. Am J Toxi & Res. 2018; 1(1): 001-004.

151. Geza Bozoky, et al. Acute Silent Non-Massive (submassive) Pulmonary Embolism. Am J Ang and Surg . 2018; 1(1): 001-003.

152. Muhammad Imran Qadir, et al. Is Hunting Lovering Associates with Pulse Rate. Am J of Viro and Dis. 2019; 1(1): 01.

153. Mujahid Rasheed, et al. Relation of Blood Group with Motion Sickness. Am J of Viro and Dis. 2019; 1(1): 02.

154. Mujahid Rasheed, et al. Views of University Paramedical Students about Causes of Pharyngitis, Its Transmission and Medicinal Control. Am J of Viro and Dis. 2019; 1(1): 02.

155. Kainat Rafaqat, et al. Views of University Paramedical Students about Causes of Pharyngitis, Its Transmission and Medicinal Control. Am J of Viro and Dis. 2019; 1(1): 02.

156. Sajid Ullah, et al. HCV Prevalence in the Volunteer

Blood Donors in District Bajaur Khyber Pakhtunkhwa Pakistan. Am J of Viro and Dis. 2019; 1(1): 02.

157. Rabbia Aslam, Analogue of Breathing With Lizard Fright Am J of Viro and Dis. 2019; 1(1): 01.

158. Hurain Shaukat, et al. Linkage of Body Temperature with Exercise Am J of Viro and Dis. 2019; 1(1): 01.

159. Mariyam Javed, et al. How Breathe Rate Relates With Cricket Likeness? Am J of Viro and Dis. 2019; 1(1): 02.

160. Hakan Alfredson, et al. Achilles and patellar tendon operations performed in local anestesia, Am J Anest and Pai med. 2018; 1(1): 001-002.

161. Richard Lechtenberg, et al. Tau Interferon in Multiple Sclerosis. Amer J Neur & Neurophysi. 2018; 1(1): 001-002.